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A d-dimensional Ising model on a lattice torus is considered. As the size n of the lattice
tends to infinity, a Poisson approximation is given for the distribution of the number
of copies in the lattice of any given local configuration, provided the magnetic field
a = a(n) tends to −∞ and the pair potential b remains fixed. Using the Stein-Chen
method, a bound is given for the total variation error in the ferromagnetic case.
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1. INTRODUCTION

The following situation, called “the law of small numbers,” is very classical in
probability theory. Suppose {Iλ}λ∈� is a finite family of indicator random variables,
with the properties that the probabilities IP(Iλ = 1) are small and that there is
not too much dependence between the Iλ’s. Then, it is reasonable to expect the
distribution of

∑
λ∈� Iλ to be approximately Poisson. In the theory of random

graphs, inaugurated by Erdös and Rényi,(8) such results are frequent (see ref. 4
or 16 for a general reference). The Iλ can, for instance, indicate the places in the
random graph where a given subgraph appear. Some analogous results hold for
random colorings of a lattice graph in dimension 2, corresponding to the context
of random images.(6) In both cases, the models are built on a large number of
independent random variables: the edges of a random graph or the pixels of a
random image. In this article, we shall study Poisson approximations for sums of
indicators defined from a large number of dependent random variables, namely
the spins of an Ising model.
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Let us consider a lattice graph in dimension d ≥ 1, with periodic boundary
conditions (lattice torus). The vertex set is Vn = {0, . . . , n − 1}d . The integer n
will be called the size of the lattice. The edge set, denoted by En , will be specified
by defining the set of neighbors V(x) of a given vertex x :

V(x) = {y �= x ∈ Vn, ‖y − x‖p ≤ ρ}, (1)

where the substraction is taken componentwise modulo n, ‖ · ‖p stands for the
L p norm in R

d (1 ≤ p ≤ ∞), and ρ is a fixed parameter. For instance, the square
lattice is obtained for p = ρ = 1. Replacing the L1 norm by the L∞ norm adds
the diagonals. From now on, all operations on vertices will be understood modulo
n. In particular, each vertex of the lattice has the same number of neighbors.

A configuration is a mapping from the vertex set Vn to the state space W =
{−1,+1}. Their set is denoted by Xn = W Vn and called the configuration set.
Here, we shall deal with one of the simplest and most widely studied parametric
families of random field distributions: the Ising model (see e.g. refs. 14 and 15).

Definition 1.1 Let Gn = (Vn, En) be an undirected graph structure with finite
vertex set Vn and edge set En . Let a and b be two reals. The Ising model with
parameters a and b is the probability measure µa,b on Xn = {−1,+1}Vn defined
by: ∀σ ∈ Xn ,

µa,b(σ ) = 1

Za,b
exp


a

∑
x∈Vn

σ (x) + b
∑

{x,y}∈En

σ (x)σ (y)


 , (2)

where the normalizing constant Za,b is such that
∑

σ∈Xn
µa,b(σ ) = 1.

Following the definition of ref. 15, p. 2, the measure µa,b defined above is a
Gibbs measure associated to potentials a and b. Expectations relative to µa,b will
be denoted by IEa,b.

In the classical presentation of statistical physics, the elements of Xn are
spin configurations; each vertex of Vn is an atom whose spin is either positive or
negative. Here, we shall simply talk about positive or negative vertices instead of
positive or negative spins. The parameters a and b are respectively the magnetic
field and the pair potential. The model remaining unchanged by swapping positive
and negative vertices and replacing a by −a, we chose to study only negative values
of the magnetic field a. Various “laws of small numbers” have been already proved
for the Ising model. Fernández et al.(9,10) have established the asymptotic Poisson
distribution of contours in the nearest-neighbor Ising model at low temperature
(i.e. b large enough) and zero magnetic field. The Stein-Chen method is a useful
way to get Poisson approximations; see refs. 1 and 3 for a very complete reference
or(5) for the original paper of Chen. Barbour and Greenwood(2) have applied it
to a class of Markov random fields; the bounds that they obtained for the Ising
model are not quite explicit. In the same context as,(10) Ferrari and Picco(11) have
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Fig. 1. A clean local configuration η with k(η) = |V+(η)| = 10 positive vertices, in dimension d = 2
and on a ball of radius r = 3 (with ρ = 1 and relative to ‖ · ‖∞).

found bounds on the total variation distance between the law of large contours
and a Poisson process. Ganesh et al.(13) have studied the Ising model for positive
values of b. Provided the magnetic field a tends to infinity, they proved that the
distribution of the number of negative vertices is approximately Poisson. Our goal
is to generalize the convergence in distribution given by(13) to any value of the pair
potential b and to objects more elaborated than a single vertex.

We are interested in the occurrences in the graph Gn of a fixed local config-
uration η (see Sec. 2 for a precise definition and Fig. 1 for an example). Such a
configuration is called “local” in the sense that the vertex set on which it is defined
is fixed and does not depend on n. Its number of occurrences in Gn is denoted by
Xn(η).

As the size n of the lattice tends to infinity, the potential a = a(n) will depend
on n whereas the potential b will remain fixed. The case where a(n) tends to −∞
corresponds to rare positive vertices among a majority of negative ones. As a
consequence, the local configuration η may occur or not in the graph, depending
on its number of positive vertices k(η). See Proposition 4.2 of ref. 7 for a precise
description of this phenomenon. In particular, in order to get a nontrivial limiting
result for the probability µa,b(Xn(η) > 0), it is needed to take e2a(n) of order
n−d/k(η). Therefore, throughout this paper, the magnetic field a(n) will satisfy the
identity

e2a(n) = cn−d/k(η), (3)

where c is a positive constant. Our first result describes the asymptotic behavior of
the number Xn(η) of occurrences of η in the lattice: it will be poissonian and will
depend on k(η) through (3), but also on the geometry of η through its perimeter,
denoted by γ (η).
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Theorem 1.2. Assume that the magnetic field a(n) satisfies (3) and that the pair
potential b is an arbitrary real number. As n tends to infinity, the distribution of
Xn(η) converges weakly to the Poisson distribution with parameter ck(η)e−2bγ (η).

The proof is based on the moment method (see ref. 4 p. 25 or Lemma 3.1),
and requires estimates based on the local energy of η (Definition 2.1). The result
of Ganesh et al.(13) is obtained as a particular case when the pair potential b is
positive and η is a single positive vertex: k(η) = 1 and γ (η) = 4.

The Stein-Chen method makes it possible to obtain good estimates on the
accuracy of Poisson approximations in terms of total variation distance. When the
Gibbs measure µa,b defined in (2) satisfies the FKG inequality(12) (i.e. for positive
values of the pair potential b), this method is applied to a sum of increasing random
indicators (24) and produces Lemma 4.4. Then, bounds on the first two moments
of the random variable Xn(η) (Lemmas 4.1 and 4.5) allow to precise the Poisson
approximation given by Theorem 1.2. This leads to our second result, where L(X )
and P(λ) respectively denote the distribution of X and the Poisson distribution
with parameter λ.

Theorem 1.3. Assume that the magnetic field a(n) satisfies (3) and that the pair
potential b is positive. Then, the total variation distance between L(Xn(η)) and
the Poisson distribution with parameter ck(η)e−2bγ (η) satisfies:

dT V (L(Xn(η)),P
(
ck(η)e−2bγ (η)

)
) = O

(
n−d/k(η)

)
.

The paper is organized as follows. The notion of local configuration η is
defined in Sec. 2. Its number of positive vertices k(η) and its perimeter γ (η) are
also introduced. Lemma 2.3 reduces proofs of Theorems 1.2 and 1.3 to clean local
configurations. In this case, integers k(η) and γ (η) naturally occur in the expression
of the local energy of η. Describing this quantity will be essential in our study.
This allows us to control the conditional probability of η to occur in the graph
(Lemma 2.4). It immediatly follows that the expected number of occurrences of
η in Gn tends to ck(η)e−2bγ (η), as n tends to infinity. Finally, Secs. 3 and 4 are
respectively devoted to the proofs of Theorems 1.2 and 1.3.

2. CONDITIONAL PROBABILITY OF A LOCAL CONFIGURATION

Let us start with some notations and definitions. Given σ ∈ Xn = W Vn and
V ⊂ Vn , we denote by σV the natural projection of σ over W V . If U and V are two
disjoint subsets of Vn then σU σ ′

V is the configuration on U ∪ V which is equal to
σ on U and σ ′ on V . Let us denote by δV the neighborhood of V (corresponding
to (1)):

δV = {y ∈ Vn \ V, ∃x ∈ V, {x, y} ∈ En},
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and by V the union of the two disjoint sets V and δV . Moreover, |V | denotes the
cardinality of V and F(V ) the σ -algebra generated by the configurations of W V .

As usual, the graph distance dist is defined as the minimal length of a path
between two vertices. We shall denote by B(x, r ) the ball of center x and radius r :

B(x, r ) = {y ∈ Vn; dist(x, y) ≤ r}.
In the case of balls, B(x, r ) = B(x, r + 1). In order to avoid unpleasant situations,
like self-overlapping balls, we will always assume that n > 2ρr . If n and n′ are both
larger than 2ρr , the balls B(x, r ) in Gn and Gn′ are isomorphic. Two properties
of the balls B(x, r ) will be crucial in what follows. The first one is that two balls
with the same radius are translates of each other:

B(x + y, r ) = y + B(x, r ).

The second one is that for n > 2ρr , the cardinality of B(x, r ) depends only on
r and neither on x nor on n: it will be denoted by β(r ). The same is true for the
number of edges {y, z} ∈ En with y, z ∈ B(x, r ), which will be denoted by α(r ).

Let r be a positive real, and consider a fixed ball with radius r , say B(0, r ).
We denote by Dr = W B(0,r ) the set of configurations on that ball. Elements of Dr

will be called local configurations of radius r . A local configuration η ∈ Dr is
determined by its subset V+(η) ⊂ B(0, r ) of positive vertices:

V+(η) = {x ∈ B(0, r ), η(x) = +1}.
The cardinality of this set will be denoted by k(η) and its complementary set in
B(0, r ), i.e. the set of negative vertices of η, by V−(η). Of course, there exists
only a finite number of local configurations of radius r (precisely 2β(r )). In what
follows, η, η′ will denote local configurations of radius r and ζ , ζ ′ those of radius
larger than r .

A local configuration η ∈ Dr is said clean if its subset of plus vertices V+(η)
is included in the ball B(0, r − 1). In other words, vertices of a clean local con-
figuration which are at distance r from the center 0 are negative. Figure 1 shows
an example of such a local configuration.

Let η ∈ Dr . For each vertex x ∈ Vn , denote by ηx the translation of η onto
the ball B(x, r ) (up to periodic boundary conditions):

∀y ∈ Vn, dist(0, y) ≤ r =⇒ ηx (x + y) = η(y).

Let us denote by I η
x the indicator function defined on Xn as follows: I η

x (σ ) is 1 if
the restriction of the configuration σ ∈ Xn to the ball B(x, r ) is ηx and 0 otherwise.
Finally, let us define the random variable Xn(η) which counts the number of copies
of the local configuration η in Gn:

Xn(η) =
∑
x∈Vn

I η
x .
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Due to periodicity, this sum consists of nd indicator functions I η
x , which have the

same distribution.
In order to control the random variable Xn(η), we describe its “local behavior”

by introducing the local energy of η. Let us start with the following definition.

Definition 2.1 Let x ∈ Vn and σ ∈ W B(x,r+1). The local energy H B(x,r )(σ ) of the
configuration σ on the ball B(x, r ) is defined by:

H B(x,r )(σ ) = a(n)
∑

y∈B(x,r )

σ (y) + b
∑

{y,z}∈En
(y∈B(x,r ))∨(z∈B(x,r ))

σ (y)σ (z),

where (y ∈ B(x, r )) ∨ (z ∈ B(x, r )) means at least one of the two vertices y and
z belongs to B(x, r ) (the other might belong to its neighborhood δB(x, r )).

Let us fix a vertex x and denote merely by B the ball B(x, r ). For any local
configuration η ∈ Dr and for any σ ∈ W δB , the local energy H B(ηxσ ) on B of the
configuration which is equal to ηx on B and σ on δB can be expressed as:

a(n)(2k(η) − β(r )) + b


 ∑

{y,z}∈En
y,z∈B

ηx (y)ηx (z) +
∑

{y,z}∈En
y∈B,z∈δB

ηx (y)σ (z)


 . (4)

Actually, this notion of local energy allows us to explicitly write the conditional
probability µa,b(I η

x = 1|σ ), σ ∈ W δB :

µa,b(I η
x = 1|σ ) = eH B (ηx σ )∑

η′∈Dr
eH B (η′

x σ )
. (5)

As we shall see in Lemma 2.4, bounding the above conditional probability is
central in our study.

An easy way to connect the number of copies of the local configuration η to
its local energy consists in writing, for any given vertex x :

IEa,b[Xn(η)] = IEa,b

[
nd I η

x

]
= IEa,b[ndµa,b

(
I η

x = 1|F(δB)
)
]. (6)

Here, µa,b(I η
x = 1|F(δB)) represents a F(δB)-measurable random variable and,

for σ ∈ W δB , µa,b(I η
x = 1|F(δB))(σ ) = µa,b(I η

x = 1|σ ) a conditional probability.
Note that the set δB has bounded cardinality (not depending on n). Then, from a
convergence result on the random variable ndµa,b(I η

x = 1|F(δB)) it will be easy
to obtain a similar result for its expectation, i.e. for IEa,b[Xn(η)].

We will now give the reason for the hypothesis (3), that links the magnetic
field a(n) to the number of positive vertices of the local configuration η. The
event Xn(η) > 0 corresponds to the appearance of η in the graph Gn . In ref. 7
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Proposition 4.2, it has been proved that:

if lim
n→∞ e2a(n)k(η)nd = 0 then

lim
n→∞ µa,b(Xn(η) > 0) = 0 and lim

n→∞ IEa,b[Xn(η)] = 0; (7)

if lim
n→∞ e2a(n)k(η)nd = +∞ then

lim
n→∞ µa,b(Xn(η) > 0) = 1 and lim

n→∞ IEa,b[Xn(η)] = +∞. (8)

In particular, the element of Dr having only negative vertices, called the null
local configuration and denoted by η0, has a probability which always tends to 1.

From now on, assume that η has at least one positive vertex; k(η) ≥ 1. Using
the vocabulary of the random graph theory, statements (7) and (8) essentially
mean that the quantity n−d/k(η) is the threshold function (for e2a(n)) of the property
Xn(η) > 0. It does not depend on the radius r of the ball on which the local
configuration η is defined: r is just a phantom parameter which serves only to
ensure that η is a local configuration. Actually, the function n−d/k(η) only depends
on the number of positive vertices of η. Roughly speaking, if e2a(n) is small
compared to n−d/k(η), then asymptotically, there is no copy of η in Gn . If e2a(n) is
large compared to n−d/k(η), then at least one copy of η can be found in the graph,
with probability tending to 1.

Consequently, in order to get a nontrivial limiting result for the probability
µa,b(Xn(η) > 0), it is needed to take e2a(n) of order n−d/k(η). Hence, for the rest of
this article, (3) is satisfied, i.e.

e2a(n) = cn−d/k(η),

for some positive constant c. Under this hypothesis, statement (7) says that asymp-
totically there will be no local configurations with (strictly) more than k(η) positive
vertices in the lattice. The following lemma quantifies this result.

Lemma 2.2. Let η ∈ Dr and suppose that e2a(n) = cn−d/k(η), for some constant
c > 0. Let R ≥ r an integer and ζ ∈ DR. Then, there exists a constant M1 > 0
such that for all n, for all vertex x ∈ Vn and for all configuration σ ∈ Xn,

ndµa,b

(
I ζ

x = 1|σδB(x,R)
) ≤ M1e2a(n)(k(ζ )−k(η)), (9)

and for all n,

IEa,b[Xn(ζ )] ≤ M1e2a(n)(k(ζ )−k(η)). (10)

Proof. Let x ∈ Vn and denote merely by BR the ball B(x, R). For any configu-
ration σ ∈ W δBR , the local energy H BR (ζxσ ) is given by (4). Since the set B R has
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a bounded cardinality, there exists a constant K > 0, only depending on the pair
potential b and the radius R (and not on n, nor x , nor σ ), such that

H BR (ζxσ ) − H BR (ζ 0
x σ ) ≤ 2a(n)k(ζ ) + K ,

where ζ 0 is the null local configuration of radius R (k(ζ 0) = 0). Hence, by relation
(5) and for all σ ∈ W δBR :

µa,b

(
I ζ

x = 1|σ ) ≤ eH BR (ζx σ )−H BR (ζ 0
x σ )

≤ e2a(n)k(ζ )+K .

Finally, hypothesis (3) provides the first inequality of Lemma 2.2:

ndµa,b

(
I ζ

x = 1|σ ) ≤ nde2a(n)k(η)+K e2a(n)(k(ζ )−k(η))

≤ ck(η)eK e2a(n)(k(ζ )−k(η)),

with M1 = ck(η)eK > 0. The quantity ndµa,b(I ζ
x = 1|σ ) is bounded uniformly on

the configuration σ ∈ W δBR . So, its expectation satisfies the same inequality and
(10) follows. �

A primary consequence of Lemma 2.2 consists in reducing our study to
clean local configurations. To any given η ∈ Dr , a local configuration η̊ ∈ Dr+1 is
associated by the following process:

η̊(x) =
{

η(x) if x ∈ B(0, r ),

−1 if dist(x, 0) = r + 1.

The local configuration η̊ is clean and satisfies k(η̊) = k(η). Note that the inequal-
ity Xn(η̊) ≤ Xn(η) holds for all size n. Actually, these two random variables are
asymptotically equal. Indeed, assume that η occurs on the ball B(x, r ). Then, hy-
pothesis (3) forces vertices at distance r + 1 from x to be negative with probability
tending to 1:

lim
n→+∞ µa,b

(
I η̊

x = 1|I η
x = 1

) = 1.

Lemma 2.3 expresses this result in terms of total variation distance. Recall that if
µ and ν are two probability distributions, the total variation distance between µ

and ν is

dT V (µ, ν) = sup
A

|µ(A) − ν(A)|,

where the supremum is taken over all measurable sets. Besides, the probability
distribution of a random variable X will be denoted by L(X ).

Lemma 2.3. Let η ∈ Dr and suppose that e2a(n) = cn−d/k(η), for some constant
c > 0. Then, the total variation distance between distributions of Xn(η̊) and Xn(η)
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satisfies:

dT V (L(Xn(η̊)),L(Xn(η))) = O
(
n−d/k(η)

)
. (11)

Furthermore, the difference between the expected numbers of copies of local
configurations η̊ and η in the graph Gn tends to 0:

lim
n→+∞ |IEa,b[Xn(η̊)] − IEa,b[Xn(η)]| = 0. (12)

In this paper, if f (n) and g(n) are two positive functions, notation f (n) =
O(g(n)) means that there exists a constant C > 0 such that, for all n, f (n) ≤
Cg(n).

Proof. On the one hand, let us introduce the subset Dη

r+1 of Dr+1 defined by:

Dη

r+1 = {ζ ∈ Dr+1, ∀x ∈ B(0, r ), ζ (x) = η(x)} .

The local configuration η̊ is the only element of Dη

r+1 satisfying k(η̊) = k(η), all
the others having at least k(η) + 1 positive vertices. Moreover, the sum of all
copies of elements of Dη

r+1 is equal to the number of copies of η:

Xn(η) = Xn(η̊) +
∑

ζ∈Dη

r+1\{η̊}
Xn(ζ ). (13)

On the other hand, the total variation distance between two probability distributions
can be written as

dT V (µ, ν) = inf{IP(X �= Y ), L(X ) = µ and L(Y ) = ν}. (14)

Using this characterization and the identity (13), it follows:

dT V (L(Xn(η̊)),L(Xn(η))) ≤ µa,b(Xn(η̊) �= Xn(η))

≤ µa,b(Xn(η) > Xn(η̊))

≤ µa,b


 ∑

ζ∈Dη

r+1\{η̊}
Xn(ζ ) > 0


 .

The above sum is an integer valued variable. So, its probability of being positive
is bounded by its expectation. Hence,

dT V (L(Xn(η̊)),L(Xn(η))) ≤
∑

ζ∈Dη

r+1\{η̊}
IEa,b[Xn(ζ )]

≤ ∣∣Dη

r+1

∣∣M1e2a(n),

by Lemma 2.2. Thus, using e2a(n) = cn−d/k(η), we deduce that the total variation
distance between the distributions of Xn(η̊) and Xn(η) is a O(n−d/k(η)).
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Finally, the same is true for the absolute value of the difference between the
expectations of Xn(η̊) and Xn(η) since:

|IEa,b[Xn(η̊)] − IEa,b[Xn(η)]| =
∑

ζ∈Dη

r+1\{η̊}
IEa,b[Xn(ζ )].

�

If the random variable Xn(η̊) converges weakly as n tends to infinity to a limit
ν, inequality (11) implies that the same is true for Xn(η). Consequently, replacing
r with r + 1 and without loss of generality, we can assume that vertices of the
reference ball B(0, r ) which are at distance r from the center 0, all belong to V−(η)
(as in Fig. 1), i.e. η can be assumed clean.

Now, the geometry (in the sense of the graph structure) of the set V+(η) of
positive vertices of η takes place in our study. Precisely, let us define the perimeter
γ (η) of a local configuration η ∈ Dr by the formula:

γ (η) = V |V+(η)| − 2 |{{x, y} ∈ V+(η) × V+(η), {x, y} ∈ En}|,
whereV represents the number of neighbors of a vertex. In particular, the perimeter
of a local configuration is always an even integer. For instance, that of Fig. 1 is
equal to 58. If η is clean, its perimeter γ (η) merely becomes:

γ (η) = |{{x, y} ∈ V+(η) × V−(η), {x, y} ∈ En}|.
In this case, γ (η) represents the number of pairs of neighboring vertices x and y of
B(0, r ) having opposite spins under η. As we shall see in the proof of Lemma 2.4,
the perimeter of a clean local configuration easily occurs in the expression of
its local energy. It is the reason why we reduce our study to that of clean local
configurations.

The following lemma will play an essential role in the proofs of Theo-
rems 1.2 and 1.3: it gives a uniform bound for the random variable ndµa,b(I η

x =
1|F(δB(x, r ))).

Lemma 2.4. Let η be a clean local configuration of radius r and suppose that
e2a(n) = cn−d/k(η), for some constant c > 0. Then, there exists a constant M2 > 0
such that for all n, for all vertex x ∈ Vn and for all configuration σ ∈ Xn,

ck(η)e−2bγ (η)
(
1 − M2e2a(n)

) ≤ ndµa,b

(
I η

x = 1|σδB(x,r )
) ≤ ck(η)e−2bγ (η), (15)

and for all n,

ck(η)e−2bγ (η)
(
1 − M2e2a(n)

) ≤ IEa,b[Xn(η)] ≤ ck(η)e−2bγ (η). (16)
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Since the quantity e2a(n) tends to 0 as n tends to infinity, the inequalities (15)
and (16) yield the two following limits. For any vertex x and any configuration σ ,

lim
n→+∞ ndµa,b

(
I η

x = 1|σδB(x,r )
) = lim

n→+∞ IEa,b[Xn(η)] = ck(η)e−2bγ (η). (17)

Thanks to (12) of Lemma 2.3, the latter limit is valid for any element of Dr (not
necessary clean).

Proof. Let x be a vertex of Vn and denote by B the ball B(x, r ). Since the
expectations of the variables Xn(η) and ndµa,b(I η

x = 1|F(δB)) are equal (see
refs. 6 and 16), is an immediate consequence of (15). So, let us prove this relation.

Let us start with inserting the perimeter γ (η) in the expression of the lo-
cal energy of η. Assume that ηx occurs on B. Then, there are γ (η) edges
{y,z} ∈ En with y, z ∈ B satisfying ηx (y)ηx (z) = −1 and α(r ) − γ (η) ones satis-
fying ηx (y)ηx (z) = 1. Hence, for all σ ∈ Xn , the local energy H B(ηxσδB) can be
expressed as:

a(n)(2k(η) − β(r )) + b


α(r ) − 2γ (η) +

∑
{y,z}∈En

y∈B,z∈δB

(−1)σδB(z)


 .

The factor (−1) in the latter sum comes from the fact that, by hypothesis, vertices
at distance r from x are all negative. Let η′ ∈ Dr be a local configuration of
radius r with k(η′) positive vertices. Then, the difference H B (η′

xσδB) − H B(ηxσδB)
between the local energies of η′

x and ηx is equal to:

H B(η′
xσδB) − H B(ηxσδB) = 2a(n)(k(η′) − k(η)) + b(2γ (η) + Q(η′

x )),

where

Q(η′
x ) =

∑
{y,z}∈En

y,z∈B

η′
x (y)η′

x (z) − α(r ) +
∑

{y,z}∈En
y∈B,z∈δB

(η′
x (y) + 1)σδB(z).

The real Q(η′
x ) does not depend on n and can be bounded uniformly on

configurations η′
x , σ : |Q(η′

x )| ≤ 2α(r + 1). Moreover, note that the null lo-
cal configuration of radius r satisfies Q(η0

x ) = 0. So, using (3), the quantity
H B(η0

xσδB) − H B(ηxσδB) becomes:

H B
(
η0

xσδB

) − H B(ηxσδB) = −2a(n)k(η) + 2bγ (η)

= log

(
nd

ck(η)

)
+ 2bγ (η),
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for any configuration σ ∈ Xn . Then, using the explicit formula for the conditional
probability µa,b(I η

x = 1|σδB) (relation (5)), we get:

µa,b

(
I η

x = 1|σδB

) ≤ eH B (ηx σδB )−H B (η0
x σδB )

≤ ck(η)e−2bγ (η)

nd
,

i.e. the upper bound of (15). The lower bound is obtained as follows. For any
configuration σ ∈ Xn:

ndµa,b

(
I η

x = 1|σδB

) = nd∑
η′∈Dr

eH B (η′
x σδB )−H B (ηx σδB )

= ck(η)e−2bγ (η)

1 + ∑
η′,k(η′)>0 e2a(n)k(η′)+bQ(η′

x )

≥ ck(η)e−2bγ (η)

1 + e2a(n) | Dr | e2|b|α(r+1)
.

Let M2 denote the quantity |Dr |e2|b|α(r+1); it only depends on the pair potential b
and the radius r . Finally, the inequality

∀u > −1,
1

1 + u
≥ 1 − u

implies the lower bound of (15). �

3. POISSON APPROXIMATION

This section is devoted to the proof of Theorem 1.2; the distribution of
Xn(η) converges weakly to the Poisson distribution with parameter ck(η)e−2bγ (η).
Previous notations and hypotheses still hold. In particular, the relation (3) between
the magnetic field a(n) and the number k(η) of positive vertices in η.

Before proving this result, it is worth pointing out here the role of the pair
potential b. First, remark that local configurations of radius r having the same
number of positive vertices can have different perimeters. Theorem 1.2 assures
that the probability (for µa,b) of the local configuration η of occurring in the graph
is asymptotically equal to

1 − e−ck(η)e−2bγ (η)
.

So, if b > 0 (resp. b < 0), this asymptotic probability is a decreasing (resp. in-
creasing) function of the perimeter γ (η). In other words, if b > 0 (resp. b < 0),
among the local configurations having the same number of positive vertices, those
having the highest asymptotic probability of occurring in the infinite graph are
those having the smallest (resp. largest) perimeter. If the pair potential b is null
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then the perimeter γ (η) of the local configuration η has no influence. All local
configurations having the same number of positive vertices have the same asymp-
totic probability 1 − e−ck(η)

of occurring in the graph. In the 2-dimensional case,
this is Theorem 2.4 of ref. 6.

In order to prove Theorem 1.2, we use the moment method based on the
following lemma ((4) p. 25).

Lemma 3.1. Let (Yn)n∈N
∗ be a sequence of integer valued, nonnegative random

variables and λ be a strictly positive real. For all n, l ∈ N
∗ define Ml(Yn), the l-th

moment of Yn, by

Ml(Yn) = IE[Yn(Yn − 1) . . . (Yn − l + 1)]

=
∑
k≥l

IP(Yn = k)
k!

(k − l)!
.

If, for all l ∈ N
∗, limn→∞ Ml(Yn) = λl then the distribution of Yn converges weakly

as n tends to infinity to the Poisson distribution with parameter λ.

First, note that Lemma 2.3 reduces the proof of Theorem 1.2 to a clean local
configuration η.

So as to lighten formulas, the quantity ck(η)e−2bγ (η) will be simply denoted
by λ. Thanks to Lemma 3.1, we just need to prove the convergence of Ml(Xn(η))
to λl for every l ∈ N

∗. The case l = 1 has already been treated at the end of the
previous section, where it was proved that M1(Xn(η)) = IEa,b[Xn(η)] tends to λ.
From now on, fix an integer l ≥ 2. In our case, the variable Xn(η) counts the
number of copies in the graph Gn of the local configuration η. Then, the quantity
Ml (Xn(η)) can be interpreted as the expected number of ordered l-tuples of copies
of η. If B represents a set of balls of radius r whose centers belong to Vn , then two
elements B(y, r ) and B(z, r ) of B will be said to be connected if there exists an
integer m and balls B1, . . . , Bm ∈ B such that B1 = B(y, r ), Bm = B(z, r ) and for
j = 1, . . . , m − 1, B j ∩ B j+1 �= ∅. This last condition allows balls B j and B j+1

to be disjoint but their centers are at distance from each other at most 2r + 1. The
connectivity is an equivalence relation on the set B.

For s = 1, . . . , l, denote by Cl (s) the set of l-tuples of vertices (x1, . . . , xl )
such that the set of balls {B(x1, r ), . . . , B(xl , r )} is composed of s equivalence
classes for the connectivity relation. Then, the l-th moment of Xn(η) becomes:

Ml (Xn(η)) =
l∑

s=1

IEa,b


 ∑

(x1,...,xl )∈Cl (s)

I η
x1

× . . . × I η
xl


 .

The term corresponding to s = l in the above sum will be denoted by M ′
l (Xn(η))

and the remaining sum by M
′′
l (Xn(η)). We are going to prove the two following



486 Coupier

limits

lim
n→∞ M ′

l (Xn(η)) = λl, (18)

lim
n→∞ M

′′
l (Xn(η)) = 0, (19)

from which Theorem 1.2 follows.
Let us first check the cardinality of Cl(s).

Lemma 3.2. There exists a constant C > 0 such that

∀s = 1, . . . , l, |Cl(s)| ≤ Cnds . (20)

Furthermore, the cardinality of Cl(l) is equivalent to ndl :

lim
n→+∞

|Cl(l)|
ndl

= 1. (21)

Proof. Let (x1, . . . , xm), m ≤ l, be a m-tuple of vertices such that the set of
balls {B(x1, r ), . . . , B(xm, r )} is composed of only one equivalence class for the
connectivity relation. Each vertex x j , j = 1, . . . , m, necessary belongs to the ball
B(x1, R) with R = l(2r + 1). So, the number of such m-tuples (x1, . . . , xm) is
bounded above by β(R)l−1nd . Applying this argument to each of the s equivalence
classes of the set formed of the l balls centered at vertices of a given l-tuple
(x1, . . . , xl ) ∈ Cl (s) provides:

|Cl(s)| ≤ β(R)s(l−1)nds .

Note that C = β(R)l(l−1) only depends on integers l and r and satisfies (20).
Now, we want to choose l vertices x1, . . . , xl such that (x1, . . . , xl ) ∈ Cl(l).

For the first vertex x1, there are nd possibilities. Let 2 ≤ j ≤ l and suppose ver-
tices x1, . . . , x j−1 have been chosen. For the j−th choice, the set of all vertices
x such that dist(x, xk) ≤ 2(r + 1) for some 1 ≤ k ≤ j − 1, must be avoided.
The cardinality of this set is bounded above by ( j − 1) × β(2(r + 1)) whatever
x1, . . . , x j−1. This bound does not depend on n. As a consequence, from the
inequalities ∏

1≤ j≤l

(nd − ( j − 1)β(2r + 1)) ≤ |Cl(l)| ≤ ndl ,

estimate (21) follows. �

Let us prove the first limit (18). Let (x1, . . . , xl ) ∈ Cl (l). By definition of the
connectivity relation, note that, for 1 ≤ i, j ≤ l and i �= j , no vertex of the ball
B(xi , r ) can be a neighbor of a vertex of the ball B(x j , r ). The Gibbs measure
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µa,b yields a Markov random field with respect to neighborhoods defined in (1)
(see for example,(15) Lemma 3 p. 7). As a consequence,

µa,b

(
l∏

i=1

I η
xi

= 1

)
= IEa,b

[
µa,b

(
l∏

i=1

I η
xi

= 1

∣∣∣∣∣F( ∪l
j=1 δB(x j , r )

))]

= IEa,b

[
l∏

i=1

µa,b

(
I η

xi
= 1

∣∣F( ∪l
j=1 δB(x j , r )

))]

= IEa,b

[
l∏

i=1

µa,b

(
I η

xi
= 1

∣∣F(δB(xi , r ))
)]

. (22)

Since the local configuration η is clean, Lemma 2.4 and relation (22) provide a
control of the probability µa,b(I η

x1 × . . . × I η
xl = 1):

λl

ndl

(
1 − M2e2a(n)

)l ≤ µa,b

(
l∏

i=1

I η
xi

= 1

)
≤ λl

ndl
,

uniformly on the l-tuple (x1, . . . , xl ) ∈ Cl(l). Hence,

|Cl(l)|
ndl

λl
(
1 − M2e2a(n)

)l ≤ M ′
l (Xn(η)) ≤ |Cl(l)|

ndl
λl .

Finally, as the ratio |Cl(l)| divided by ndl tends to 1 (relation (21)), the quantity
M ′

l (Xn(η)) tends to the searched limit.
There remains to prove that M

′′
l (Xn(η)) tends to 0 as n tends to infinity.

The intuition is that if the local configuration η occurs on two balls B(x, r ) and
B(x ′, r ) with dist(x, x ′) ≤ 2(r + 1), then locally (strictly) more than k(η) positive
vertices are present in a ball of radius 2(r + 1). This has vanishing probability by
Lemma 2.2.

Let us prove that every term of the sum defining M
′′
l (Xn(η)) tends to 0: fix

an integer 1 ≤ s ≤ l − 1. Let (x1, . . . , xl ) ∈ Cl(s). The set of balls with radius r ,
centered at these vertices, splits into s equivalence classes, say EC(1), . . . , EC(s).
Let us denote by C j the union of balls belonging to the equivalence class EC( j).
Once again, we use the markovian character of the Gibbs measure µa,b:

µa,b

(
l∏

i=1

I η
xi

= 1

)
= IEa,b

[
µa,b

(
l∏

i=1

I η
xi

= 1

∣∣∣∣∣F( ∪l
j=1 δC j

))]

= IEa,b


 s∏

j=1

µa,b


 ∏

i,B(xi ,r )∈EC( j)

I η
xi

= 1

∣∣∣∣∣∣F(δC j )





 .
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As a consequence of s ≤ l − 1, there exists at least one connected component, say
EC(1), having at least two elements: let x(1) and x ′(1) be two vertices satisfying
dist(x(1), x ′(1)) ≤ 2r + 1 and B(x(1), r ), B(x ′(1), r ) ∈ EC(1). For every j =
2, . . . , s, denote by x( j) one of centers of balls belonging to EC( j). Then, we can
write:

µa,b


 ∏

i,B(xi ,r )∈EC( j)

I η
xi

= 1

∣∣∣∣∣∣F(δC j )




≤ µa,b

(
I η

x( j) = 1
∣∣∣F(δC j )

)
≤ IEa,b

[
IEa,b

[
I η

x( j)

∣∣∣F(δC j ∪ δB(x( j), r ))
] ∣∣∣F(δC j )

]
≤ IEa,b

[
IEa,b

[
I η

x( j)

∣∣∣F(δB(x( j), r ))
] ∣∣∣F(δC j )

]

≤ λ

nd

by Lemma 2.4 (η is clean). This last inequality allows us to write:

µa,b

(
l∏

i=1

I η
xi

= 1

)
≤

(
λ

nd

)s−1

IEa,b


µa,b


 ∏

i,B(xi ,r )
∈EC(1)

I η
xi

= 1

∣∣∣∣∣∣∣∣
F(δC1)







≤
(

λ

nd

)s−1

µa,b


 ∏

i,B(xi ,r )
∈EC(1)

I η
xi

= 1




≤
(

λ

nd

)s−1

µa,b

(
I η

x(1) = I η

x ′(1) = 1
)
. (23)

Denote by D>k(η)
2r+1 the (finite) set of local configurations of radius 2r + 1 having at

least k(η) + 1 positive vertices. Then, the event I η

x(1) = I η

x ′(1) = 1 implies that one

of the elements of D>k(η)
2r+1 occurs in B(x(1), 2r + 1). It follows that:

µa,b

(
I η

x(1) = I η

x ′(1) = 1
) ≤

∑
ζ∈D>k(η)

2r+1

IEa,b[I ζ

x(1)]

≤ n−d
∑

ζ∈D>k(η)
2r+1

IEa,b[Xn(ζ )]

≤ n−d
∣∣D>k(η)

2r+1

∣∣ M1 e2a(n),
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by Lemma 2.2. As a consequence, the following bound does not depend on the
l-tuple (x1, . . . , xl ) ∈ Cl(s):

µa,b

(
l∏

i=1

I η
xi

= 1

)
≤ λs−1

nds

∣∣D>k(η)
2r+1

∣∣ M1 e2a(n).

Finally, Lemma 3.2 implies that:

IEa,b


 ∑

(x1,...,xl )∈Cl (s)

I η
x1

× . . . × I η
xl


 ≤ Cλs−1

∣∣D>k(η)
2r+1

∣∣ M1 e2a(n),

which tends to 0 as n tends to infinity. Theorem 1.2 follows.

4. THE FERROMAGNETIC CASE

In this section, we suppose the pair potential b is nonnegative and the magnetic
field a(n) satisfies the relation (3):

e2a(n) = cn−d/k(η),

for some positive constant c > 0. Under these hypotheses, Theorem 1.3 says
that the total variation distance between L(Xn(η)) and its Poisson approximation
P(ck(η)e−2bγ (η)) is a O(n−d/k(η)).

We believe that n−d/k(η) is the real speed at which the total variation distance
between L(Xn(η)) and P(ck(η)e−2bγ (η)) tends to zero. Indeed, it seems to be true
for the upper bound given by Lemma 4.4 (for more details, see Chapter 3 of ref. 3)
Besides, in the case where the local configuration η represents a single positive
vertex (with k(η) = 1, γ (η) = 4, ρ = 1 and relative to ‖ · ‖1), Ganesh et al.(13)

proved that

log dT V (L(Xn(η)),P(ce−8b))

log n−d
→ 1,

as n tend to infinity.
The rest of this section is devoted to the proof of Theorem 1.3. First, note that

Lemma 2.3 reduces the proof to a clean local configuration η. Let us start with some
notations and definitions. There is a natural partial ordering on the configuration
set Xn = {−1,+1}Vn defined by σ ≤ σ ′ if σ (x) ≤ σ ′(x) for all vertices x ∈ Vn . A
function f : Xn → IR is increasing if f (σ ) ≤ f (σ ′) whenever σ ≤ σ ′.

From the local configuration η, let us define the subset Dr (η) of Dr by:

Dr (η) = {η′ ∈ Dr , V+(η′) ⊃ V+(η)}.
Each local configuration of D∗

r (η) = Dr (η) \ {η} has at least k(η) + 1 positive
vertices. Moreover, by definition of Dr (η) and for all x ∈ Vn , the indicator I

η

x
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defined by

I
η

x =
∑

η′∈Dr (η)

I η′
x

is an increasing function. Let us introduce the corresponding random variable
Xn(η):

Xn(η) =
∑
x∈Vn

I
η

x (24)

= Xn(η) +
∑

η′∈D∗
r (η)

Xn(η′), (25)

whose expectation IEa,b[Xn(η)] will be simply denoted by λn . As in the previous
Section, the quantity ck(η)e−2bγ (η) will be denoted by λ.

The proof of Theorem 1.3 is organized as follows. The total variation distance
between L(Xn(η)) and P(λ) is bounded by:

dT V (L(Xn(η)),L(Xn(η))) + dT V (L(Xn(η)),P(λn)) + dT V (P(λn),P(λ)).

Let us respectively denote by T1, T2 and T3 the three terms of the above sum.
We are going to prove that each of them is of order O(n−d/k(η)). Terms T1 and
T3 are respectively dealt with using Lemmas 4.1 and 4.2. Applied to the family
of indicators {I

η

x , x ∈ Vn}, the Stein-Chen method gives an upper bound for T2

(Lemma 4.4). Finally, Lemma 4.5 implies that this upper bound is a O(n−d/k(η)).
Hypothesis (3) implies that occurrences of local configurations with (strictly)

more than k(η) positive vertices have vanishing probability. Hence, the random
variables Xn(η) and Xn(η) will be asymptotically equal. So do their expectations.

Lemma 4.1. The total variation distance between the distributions of Xn(η) and
Xn(η) satisfies:

dT V (L(Xn(η)),L(Xn(η))) = O
(
n−d/k(η)

)
. (26)

Furthermore, there exists a constant M3 > 0 such that for all n:

λ
(
1 − M3e2a(n)

) ≤ λn ≤ λ
(
1 + M3e2a(n)

)
. (27)

Proof. Thanks to relation between Xn(η) and Xn(η) (25) and characterization
(14) of the total variation distance, we get:

dT V (L(Xn(η)),L(Xn(η))) ≤ µa,b(Xn(η) �= Xn(η))

≤ µa,b


 ∑

η′∈D∗
r (η)

Xn(η′) > 0



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≤
∑

η′∈D∗
r (η)

IEa,b[Xn(η′)]

≤ |D∗
r (η)| M1e2a(n),

by Lemma 2.2. So, the quantity dT V (L(Xn(η)),L(Xn(η))) is equal to O(e2a(n)) =
O(n−d/k(η)).
Using the previous inequalities, a control of the expectation λn of Xn(η) is obtained:

IEa,b[Xn(η)] ≤ λn ≤ IEa,b[Xn(η)] + |D∗
r (η)|M1e2a(n).

Since η is clean, relation (16) can be applied. The above control becomes:

λ
(
1 − M2e2a(n)

) ≤ λn ≤ λ
(
1 + |D∗

r (η)|M1λ
−1e2a(n)

)
.

Recall that constants M1 and M2 do not depend on the size n. Relation (27) follows
by letting:

M3 = max{M2, |D∗
r (η)|M1λ

−1}.
�

Using (27), we shall now bound T3.

Lemma 4.2. The total variation distance between the Poisson distributions with
parameters λn and λ satisfies:

T3 = dT V (P(λn),P(λ)) = O
(
n−d/k(η)

)
.

Proof. The total variation distance between two probability distributions on the
set of integers can be expressed as:

dT V (µ, ν) = 1

2

∑
m≥1

|µ(m) − ν(m)|.

Let m ≥ 1. Thanks to relation (27), the difference λm
n e−λn − λme−λ is easily con-

trolled. Thus, dT V (P(λn),P(λ)) is bounded by 1
2

∑
m≥1 max{αm, βm}

where:

αm = λme−λ

m!

(
eλM3e2a(n)(

1 + M3e2a(n)
)m − 1

)
and

βm = λme−λ

m!

(
1 − e−λM3e2a(n)(

1 − M3e2a(n)
)m)

.

Using the convexity of the function

fm : ] − 1, 1[−→ IR, x �−→ (1 + x)meλx ,
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one easily checks that αm ≥ βm , for all m ∈ IN∗. As a consequence,

dT V (P(λn),P(λ)) ≤ 1

2

∑
m≥1

αm ≤ 1

2

(
e2λM3e2a(n) − 1

)

which is of order O(n−d/k(η)) by relation (3). �

There remains to bound the term T2 = dT V (L(Xn(η)),P(λn)). This is based
on the Stein-Chen method and particulary on Corollary 2.C.4, p. 26 of ref. 3 which
is described below (Proposition 4.3). Let {Ii }i∈I be a family of random indicators
with expectations πi . Let us denote

W =
∑
i∈I

Ii and θ =
∑
i∈I

πi .

The random variables {Ii }i∈I are positively related if for each i , there exists random
variables {Jj,i } j∈I defined on the same probability space such that

L(Jj,i , j ∈ I ) = L(I j , j ∈ I |Ii = 1)

and, for all j �= i , Jj,i ≥ I j .

Proposition 4.3. If the random variables {Ii }i∈I are positively related then:

dT V (L(W ),P(θ )) ≤ 1 − e−θ

θ

(
V ar (W ) − θ + 2

∑
i∈I

π2
i

)
.

Proposition 4.3 can be applied to our context. Indeed, for a positive value
of the pair potential b, the Gibbs measure µa,b defined by (2) satisfies the FKG
inequality, i.e.

IEa,b[ f g] ≥ IEa,b[ f ]IEa,b[g], (28)

for all increasing functions f and g on Xn: see for instance Sec. 3 of ref. 12
Then, Theorem 2.G p. 29 of ref. 13 implies that the increasing random indicators
{I

η

x , x ∈ Vn} are positively related. Replacing Ii with I
η

x , W with Xn(η) and θ with
λn , Proposition 4.3 produces the following result. This is the only place where the
hypothesis b ≥ 0 is actually used in the proof.

Lemma 4.4. If the pair potential b is nonnegative then the following inequality
holds:

dT V (L(Xn(η)),P(λn)) ≤ 1

λn


V ara,b[Xn(η)] − λn + 2

∑
x∈Vn

IEa,b[I
η

x ]2


 . (29)
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The bound (29) indicates that, as n → +∞, the sum
∑

x∈Vn
IEa,b[I

η

x ]2 is
small and the distance to the Poisson approximation is essentially the difference
between the variance and the expectation of Xn(η). Using good estimates on the
first two moments of the random variable Xn(η), this difference will be bounded.
The case of the first moment of Xn(η), i.e. its expectation λn , has been treated in
Lemma 4.1. The following result concerns its second moment:

Lemma 4.5. The second moment M2(Xn(η)) = IEa,b[Xn(η)(Xn(η) − 1)] of the
random variable Xn(η) satisfies:

M2(Xn(η)) = λ2 + O
(
n−d/k(η)

)
.

Writing the variance of the variable Xn(η) as M2(Xn(η)) + λn − λ2
n and the

sum
∑

x∈Vn
IEa,b[I

η

x ]2 as the ratio λ2
n/nd , we deduce from Lemma 4.4 that:

T2 ≤ 1

λn

(
M2(Xn(η)) + λ2

n

(
2

nd
− 1

))
.

The inequalities given by (27) and Lemma 4.5 allow us to control the expectation
λn and the second moment M2(Xn(η)) of the random variable Xn(η). This implies:

T2 = O
(
e2a(n)

) + 2λ2

nd
,

which is a O(e2a(n)) = O(n−d/k(η)) since k(η) ≥ 1.
Let us finish the proof of Theorem 1.3 by proving Lemma 4.5.

Proof (of Lemma 4.5): First, recall that C2(s), for s = 1, 2, represents the set of
couples (x1, x2) whose set {B(x1, r ), B(x2, r )} splits into s equivalence classes for
the connectivity relation. In other words, (x1, x2) belongs to C2(1) if dist(x1, x2) ≤
2r + 1 and to C2(2) otherwise. So, the second moment of Xn(η) is equal to:

M2(Xn(η)) =
2∑

s=1

IEa,b


 ∑

(x1,x2)∈C2(s)

I
η

x1
× I

η

x2


 .

Each indicator I
η

x is defined as the sum of I η′
x , η′ ∈ Dr (η). Hence, the second

moment M2(Xn(η)) becomes:

M2(Xn(η)) =
∑

η1,η2∈Dr (η)

(E1(η1, η2) + E2(η1, η2)), (30)

where for s = 1, 2, the quantity Es(η1, η2) is defined by:

Es(η1, η2) = IEa,b


 ∑

(x1,x2)∈C2(s)

I η1
x1

I η2
x2


 .



494 Coupier

Let (η1, η2) be a couple of local configurations belonging to Dr (η) and (x1, x2)
be a couple of vertices. In a first time, consider (x1, x2) ∈ C2(1). Then it has been
already seen at the end of the previous section that the event I η1

x1 = I η2
x2 = 1 implies

that one of the elements of D>k(η)
2r+1 necessary occurs in B(x1, 2r + 1). It follows

that:

µa,b

(
I η1

x1
= I η2

x2
= 1

) ≤
∑

ζ∈D>k(η)
2r+1

IEa,b

[
I ζ

x1

]

≤ n−d
∑

ζ∈D>k(η)
2r+1

IEa,b[Xn(ζ )]

≤ n−d
∣∣D>k(η)

2r+1

∣∣ M1 e2a(n),

by Lemma 2.2. Thus, thanks to Lemma 3.2, we deduce that Es (η1, η2), for s = 1, 2,
is a O(e2a(n)) = O(n−d/k(η)).

Now, let us suppose that (x1, x2) ∈ C2(2). Some technics already used in the
previous section give:

IEa,b

[
I η1

x1
I η2

x2

] = IEa,b

[
2∏

i=1

µa,b

(
I ηi

xi
= 1

∣∣F(δB(xi , r ))
)]

. (31)

At this point of the proof, two cases must be distinguished: either both local
configurations η1 and η2 are equal to η or not. In the first case, Lemma 2.4 and
(31) imply:

IEa,b

[
I η

x1
I η

x2

] ≤ n−2dλ2.

Then, the quantity E2(η, η) which is actually the second moment of Xn(η), is
bounded by λ2. In the other case, at least one of the two local configurations η1,
η2 ∈ Dr (η) is different from η, i.e. has at least k(η) + 1 positive vertices. Then,
coupling Lemma 2.2 with (31), it follows that:

E2(η1, η2) ≤ M2
1 e2a(n)(k(η1)+k(η2)−2k(η)),

which is a O(e2a(n)) = O(n−d/k(η)). �
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